By Paul Abel

Published: Thursday, 12 May 2022 at 12:00 am


Mars is a dynamic world, and there are often fascinating changes occurring on the Red Planet that make it well worth observing through a telescope or imaging with a camera.

Here we’ll highlight some of the seasonal changes on Mars you can expect to see with a telescope, and how best to go about observing them.

""
Mars, photographed by Avani Soares, Parsec Observatory, Canoas, Brazil.

Observing a year on Mars

Mars has an axial tilt of some 25° and so it experiences well-defined seasons of winter, spring, summer and autumn as it moves in its orbit around the Sun. Have you ever wondered what it would be like to view the night sky from Mars?

Just like Earth, opposite hemispheres experience opposite seasons: summer in the northern hemisphere means winter in the south.

Since many of the changes on Mars are due to the changes in seasons, it is important that we keep track of exactly where we are in the Martian calendar at any particular time.

Astronomers have devised a simple way of doing that – it’s called solar longitude, or Ls for short.

""
Martian seasons: the values of solar longitude (Ls) as Mars goes around the Sun – with equivalent Earth dates in blue. Credit: Pete Lawrence

In the diagram above you can see that the Martian orbit is divided up into 12 intervals. Ls can be thought of as the angle made by Mars as it moves around the Sun.

Astronomers take the autumn equinox in the southern hemisphere to be the value Ls=0° and our first Martian month sees the value of Ls go from 0° to 30°, while the second month sees the Ls range go from 30° to 60° and corresponds to later summer in the south.

Meanwhile the northern hemisphere has passed into spring. We continue in this way until we have broken the Martian year up into 12 months, each spanning 30° of the Red Planet’s orbit.

Of course, Martian months are longer than Earth’s, since a Martian year is about twice that of our own.

By looking up the value of Ls, we can tell exactly where Mars is in its orbit and work out what the seasons should be in either the northern or southern hemisphere.

We can also mark out other important events: perihelion (when Mars is closest to the Sun) occurs at Ls=251°.

So, when Mars opposition occurs close to this value of Ls, we know it will be a ‘perihelic’ opposition – as was the case in October 2020.

You can find the value of Ls by using the free software WINJUPOS: it’s the value called ‘longitude of the Sun’ in the ‘Ephemerides’ tab.

The Handbook of the British Astronomical Association also gives the values in its ‘Mars Section’.

""
The location of Olympus Mons is revealed to observers by the clouds around its summit. Credit: Pete Lawrence

How do the seasons change on Mars?

Late summer in the southern hemisphere of Mars, Ls has a value of around 310°.

A number of changes have started to occur – the southern polar cap (SPC) has now shrunk and this has returned volatiles, such as dust and water vapour, back into the Martian atmosphere.

Watch out for brilliant white clouds that collect around the Tharsis volcanoes. Olympus Mons in particular can attract bright clouds; these indicate its position in small to medium telescopes – the Solar System’s largest volcano is otherwise invisible to such apertures.

Bright clouds and fogs also collect in the deep basins. In January 2021 keep an eye on the Hellas Basin, to the south of Syrtis Major.

It is not uncommon for Hellas to become filled with white clouds when it’s near the morning or evening limb and as a result, it can become very bright. Eridania, Electris and Chryse are regions also prone to attracting clouds.

""
Clouds are also known to gather in the huge Hellas Basin to the south of the triangular Syrtis Major. Credit: Pete Lawrence.

Using filters to observe Mars

Visual filters are a great help when observing Mars. Most telescopes come with a set and they are very easy to use. You simply screw them into the thread at the base of your eyepiece.

Each filter is unique, and you can identify each one by looking at the W number on the side. This gives the filter’s ‘Wratten number’. If you have a small to medium sized telescope, try using a light blue filter (W80 or W80A) to increase the definition of white clouds.

If you do see fogs and white clouds, it is worth spending some time observing them as they can be quite dynamic, often forming and evaporating over the course of an hour or two.

It is particularly satisfying to watch bright clouds which have collected in the early morning chill of the Hellas Basin, slowly disperse during the course of an observing session.

When bright clouds occur on the limb of the planet, they can be really quite brilliant. If you have a larger telescope, a W47 violet filter will help bring fine details out further.

""
Wratten filters make Martian dust clouds easier to see than in an unfiltered view (top left). Use light blue (W80A), yellow (W15) or violet (W47) filters to enhance cloud definition. Credit: Pete Lawrence

A W15 yellow filter will make the southern polar cap slightly easier to see, as it is now quite small and a challenge in small telescopes.

During spring in the northern hemisphere, the vast north polar hood is extending quite a way south.

You should be able to glimpse it as a bluish-white haze on the northern limb, and it will become more prominent towards the year’s end.

Mars’s tilt will also start to change – from January onwards, the northern hemisphere will gradually be better placed for views of well-known albedo features like Acidalium and Elysium.

Observers using larger scopes might be able to catch sight of the northern polar cap.

At Ls=0°, a phenomenon known as the ‘equatorial cloud band’ (ECB) should start to make an appearance.

The ECB takes the form of a thin white cloud along the equator; when it passes over darker regions like Syrtis Major, it can make the features appear bluish. Watch out for this from early February onwards.

The well-known dust storm season stars from about Ls=240°, so keep an eye out for them (more on this below).

These storms usually begin life as small orange clouds and they are easier to see if you use a red filter (W25) when observing Mars.

Dust storms can evolve quite rapidly and it is important to track them and any surface changes.

""
Two images captured by the Mars Orbiter Camera on NASA’s Mars Global Surveyor orbiter in 2001 show a change in the planet’s appearance as a result of haze raised by dust storms. These images were taken about a month apart. Credit: NASA/JPL-Caltech/MSSS

Mars’s changing surface

All of these seasonal effects result in long-term changes to the planet’s surface. Dust storms in particular can produce quite pronounced changes to the dark albedo features, as vast amounts of dust tend to be moved and deposited into new locations.

One only has to look back at a map of Mars drawn in the 1960s to see how a number of features like Syrtis Major and Solis Lacus have changed over time.

In the last few years the northern hemisphere albedo feature known as Acidalium has changed considerably and it will be important to track any new changes which result in future dust storms.

It is well worth recording your observations in a log book (read our guide on how to keep an astronomical log book) as this will allow you to keep track of all of the changes and seasonal weather patterns that you have observed.

It’s also a great way to become familiar with Martian geography, especially if you have several drawings of the same feature.

Take time to follow the Red Planet for as long as possible and keep track of all of the interesting developments occurring on it.

""

How to observe Mars dust storms

Although the Martian atmosphere is tenuous, it is quite capable of producing powerful dust storms. Winds of half  the speed of sound have been recorded.

Typically, the dust storm season starts at about Ls =240° and it continues to Ls=0°. This means that we can expect to see them from now until early February 2021.

The Martian dust storm season has been studied in great detail, and there are three types of dust storm which occur:

  1. Local: these dust storms are confined to very small regions like a corner of the Hellas Basin.
  2. Regional: these dust storms may cover an entire region like Syrtis Major, or indeed a whole hemisphere.
  3. Global: the largest, these dust storms cover the entire planet. During this time the entire globe can become featureless even to large telescopes.

Local and regional dust storms tend to be the most frequent. During the previous opposition in 2018, I was able to observe a regional dust storm at the Lowell Observatory, in Flagstaff, Arizona (pictured below)

""
Paul Abel using the 24-inch Clark Refractor at Arizona’s Lowell Observatory to observe Mars. Credit: Paul Abel

Truly global dust storms are quite rare – two prominent ones occurred in 1975 and 1977, around the time that the Viking missions were approaching Mars.

There are a number of sites on Mars that are well known for producing storms, including the Hellas Basin, Solis Lacus, Noachis and Chryse, and you should survey these regions whenever you can.

Storms always start off as bright yellow or orange clouds. Local ones will require a 150mm telescope or larger to be seen, but regional ones can be visible in smaller instruments.

You’ll find a red (W25), orange (W21) or yellow (W15) filter will also help enhance dust clouds and make them easier to see.

If a large storm does erupt, it is a good idea to record its progress; you can do this by sketching the region and plotting the size and location of the dust storm as it changes over time.

Have you managed to spot Mars in the night sky, or even photograph it? Let us know by getting in touch via contactus@skyatnightmagazine.com or Facebook, Twitter and Instagram.

This guide originally appeared in the November 2020 issue of BBC Sky at Night Magazine.